MTH 211, Final Exam, spring 2014

Ayman Badawi

QUESTION 1. (i) To tile a floor, we may use pieces of a regular 12-gon with :
a) pieces of regular 3-gon and pieces of regular 6-gon \quad b) pieces of regular 8-gon \quad c) pieces of regular 4-gon
d) pieces of regular regular 6-gon and pieces of regular 6-gon.
(ii) To tile a floor, we may use pieces of regular 4-gon with:
a) pieces of regular 12-gon and pieces of regular 3-gon
b) pieces of regular 8-gon and pieces of regular 3-gon.
c) pieces of regular 3-gon.
d) (a) or (c).
(iii) To a tile a floor, we may use pieces of regular 8 -gon with:
a) pieces of regular 3-gon
b) pieces of regular 4-gon
c) pieces of regular 6-gon
d) (a) or (b)
(iv) Let K_{n} be a sequence such that $K_{0}=2, K_{1}=1$, and $K_{n}=K_{n-1}+6 K_{n-2}$ for each $n \geq 2$. Then $K_{3}=$
a) 13
b) 35
c) 19
d) 5
(v) The general formula for K_{n} is
a) $2^{n}-3^{n}$
b) $3^{n}+2^{n}$
c) $2^{n}+(-3)^{n}$
d) $3^{n}+(-2)^{n}$
(vi) Define a function h over the points in the $x y$-plane such that if $w=(a, b)$ is a point in the plane viewed as $w=a+b i$, then $h(w)=(-4,-4) \cdot w$, where ".$"$ indicates complex-multiplication. Then $h((1,2))=$
a) $(4,-12)$
b) $(-12,-12)$
c) $(12,-124) \mathrm{d})(-12,4)$
(vii) The angle of rotation of the above h is :
a) 45 clockwise
b) 135 clockwise
c) 45 counter clockwise
d) 180 clockwise
(viii) The stretching factor of h above is:
a)4
b) $4 \sqrt{2}$
c) 4
d) 8
(ix) Let C be a circle of radius 4 centered at O , and A is a point inside C such that $|O A|=2$. Then $|A \operatorname{Inv}(A)|=$
$\begin{array}{ll}\text { a) } 8 & \text { b) } 6\end{array}$
c) 4
d) 10
(x) Let C be a circle centered at A with radius 6 and D is another circle with radius 2 centered at B such that D is passing through A. Then the inversion of D with respect to C is :
a) a line that is perpendicular to the line $A B$ at a point F such that $|A F|=9 \quad$ b) a line that is perpendicular to the line $A B$ at a point F such that $|A F|=3 \quad$ c) a circle with radius 3 passing through $A \quad$ d)a circle with radius 4 passing through A.
(xi) Let C be a circle centered at O. Given A, B are points such that O, A, B lie on the same line and $|O A|<|O B|$. Then
a) $|\operatorname{Inv}(A) \operatorname{Inv}(B)|=|A B|$
b) $|\operatorname{OInv}(A)|<|\operatorname{OInv}(B)|$
c) $|\operatorname{OInv}(B)|<|\operatorname{OInv}(A)|$
d) We can not tell
(xii) The measurement of each vertex-angle of a regular 20-gon is
a) 144
(b) 162
c) 18
d) 36
(xiii) One of the following is constructible by unmarked ruler and a compass:
a) regular 26 -gon
b) regular 40-gon
c) regular 38 -gon
d) regular 54-gon
(xiv) Using unmarked ruler and a compass:
a) We can construct a 48 degree angle. b) We can construct a 10 degree angle.
c) We can construct a 55 degree angle. d)None of the previous is true.
(xv) Let C be a circle centered at A with radius 6 and D is another circle with radius 2 centered at B such that $|A B|=1$. Then the inversion of D with respect to C is :
a) A circle with radius 24 centered at L such that $|B L|=13$. b) A circle with radius 4 centered at L such that $|B L|=2$. c) A circle with radius 24 centered at L such that $|B L|=11$. d) A circle with radius 24 centered at L such that $|B L|=12$. e) None of the previous is correct.
(xvi) Let C be a circle centered at O and with radius 6 . Given A is a point such that $|O A|=2$ and D is a circle orthogonal to C and passing through A. Then one of the following values is a possibility for the radius of D :
a) 11
b) 7.5
c) 6.5
d) 1.5
(xvii) Let H be the horizon circle (the model for non-Euclidean) with radius 4 and centered at O. Let A be a point in H such that $|O A|=3$. Then the non-Euclidean distance between O and A is :
a) $\ln (3)$
b) $\ln (7)$
c) $\ln (9)=2 \ln (3)$
d) $\ln (4)$
(xviii) In non-Euclidean Geometry, it is possible to construct a triangle such that the sum of all vertex-angles $=$
a) 183
b) 180
c) 10
d) 201
e) (a) and (b) f) none of the previous is correct
(xix) Let C be a circle centered at A with radius 6 and D is another circle with radius r centered at B such that $|A B|=10$ and D is orthogonal to C. Then the radius of the inversion of D with respect to C is :
a) 10
b) $6 \quad$ c) 5
d) 8
e) not enough information/ so we cannot answer the question.
(xx) Let C be a circle of radius 6 centered at O, A and B are points such that $|A O|=|B O|=2$ and the angle $A O B$ is a right angle at O. The radius of the circle that passes through A, B and orthogonal to C is (Just write the answer here, do not show me the work)
(xxi) Let C be a circle with radius 5 and centered at $(0,0)$. the inversion of the point $(3,4)$ with respect to C is the point
(xxii) Given a line segment $A B$. The following steps will be used to construct a point C on the line $A B$ such that $\frac{|A B|}{|A C|}=1+\sqrt{5}$. Write at most 6 steps in order to locate the point c
a.
b.
c.
d.
e.
f.
(xxiii) Given a line segment $A B$ and a line segments of length 1 cm . Write at most 4 steps in order construct a line segment of length $\sqrt{|A B|}$.
a.
b.
c.
d.
(xxiv) If $A B$ is a line segment of length $X>1$ and $A D$ is another line segment of length Y and you are given a line segments of length 1 cm . Construct a point C on the line $A D$ such that $X|A C|=Y$. Write at most 4 steps in order to locate C.
a.
b.
c.
d.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

